NOTATION

U, light energy density; ®, initial light energy distribution; p, distribution function of the random dis-
placements; Z, length of a lens; D, distance between lenses; ¢, specific convergence of the structure in a lens;
Gy; unit 2 X 2 matrix; oy, Pauli matrix; A, random displacements of the lenses; ¢, the variance of the random
displacements; N, number of lenses in the light guide..
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CALCULATING ANGULAR RADIATION COEFFICIENTS
BY THE METHOD OF FLOW ALGEBRA

A. I. Skovorodkin UDC 535.231:536.3

A method is described for the calculation of mean angular radiation coefficients in two-dimen-
sional systems consisting of any number of plane surfaces, including systems inwhichtwo adja-
cent surfaces form a concave part of the contour. I is shown that for the calculation it is suf-
ficient to know the coordinates of all zone boundaries and the characteristic point of the system.

In calculations of radiative heat exchange between surfaces of a system infinitely stretched out in one
direction (a two-dimensional system), the method of flow algebra is widely used for the determination of mean
angular radiation coefficients [1, 2]. This method is often called the method of siretched strings, the envel-
oping curves method, and the algebraic method. I conformity with the notation in Fig. 1, the angular coeffi-
cient between two terminal surfaces F; and F, is given by the simple algebraic expression

(AC + BTD) — (AD -+ BTKC) (1)
2 AB !

P12 =

where AC, BTD etc., are the lengths of the elastic strings stretched between the corresponding boundaries of
the surfaces F; and F,.

It should be noted that the determination of the lengths of elastic strings in systems with a large number
of zones, particularly in the case of calculations with many variants, gives rise to fundamental difficultics and,
as a rule, necessitates the use of a computer. Here it is desirable to describe the system by a minimum num-
ber of initial values and to calculate the elements of the matrix of angular radiation coefficients according to
a universal relation. '

The objective of the present work is application of the method of flow algebra for the calculation of an-
gular coefficients in two-dimensional systems of plane surfaces.
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Fig. 1 Fig. 2

Fig. 1. Calculating the angular radiation coefficient by the
method of flow algebra.

Fig. 2. System without concave parts.

M \\_ —
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Fig. 3. Examples of systems with one concave part.

§1. We consider a closed system consisting of m plane surfaces and not having concave portions. The
contour of the system is divided into n zones, with n=m (Fig. 2). We number in succession the points corre-
sponding to the boundaries of the zones and the zones themselves so that the i-th zone is located between the
points i and i+1. The mean angular radiation coefficient between the zones i and j according to (1) is given by
the expression

Q5= G s+ i, j*;; di, o0 — 0y, 5 . @)

iy 141

All distances between the zone boundaries constitute the lengths of the straight line segments
d,i=V (G—xP -G —y)P - (3)

The coordinates of zone boundaries in an arbitrary coordinate system are calculated in terms of the geomet-
rical parameters of the system under investigation or are determined by another method, for example, by a
graphical method.

§ 2. The approach just described can be extended to a more complex case. Let in a system of plane
surfaces two certain adjacent surfaces form a concave part of the contour. This part is an obstacle to the
rays between certain zones of the system (Fig. 3). The point of intersection of these surfaces is called the
characteristic point of the system. The stretched strings between the boundaries of zones in this system have
the form of either straight lines (in the absence of an obstacle) or broken lines of two segments with the break
the characteristic point (in the presence of an obstacle).

The system being investigated must be arranged relative to a rectangular coordinate system so that one
of the axes (for example, the x axis) divides the system into two parts, in each of which there are no obstacles
between the zones. For this it is sufficient for the surfaces forming the concave part to be located on differ-
ent sides of the x axis and the characteristic point, consequently, to lie on this axis (Fig. 3).

For zone boundaries located in different parts, i.e., having different signs of the coordinate y, the val-
ues of the two angles are given by

W, g = aretg 251 (4)

Y —Yji
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i R4

P;, , = arctg

- (5)
i Yy — Yy

Comparing the values of these angles we can determine the presence or absence of an obstacle between
the points being considered, with the comparison condition depending on the direction of the x axis. If the sec-
tion of the system with the x axis is located toward increasing x from the characteristic point (Fig. 3a and ¢),
then the presence of an obstacle between the points i and j is given by the condition

$i, s>, 0 (6)

In the case where the section is located toward decreasing x from the characteristic point, we use the condi-
tion

¥y, 5 < (D

The length of the stretched string between the points, when the condition (6) or (7) is fulfilled, is calculated as
the sum of the two segments

L dyy=d; +dg; (8)

The distances from zone boundaries to the characteristic point and between zone boundaries in the absence of
an obstacle are determined according to the relation (3).

The method proposed for the determination of the lengths of stretched strings is universal for systems
of such type, i.e., it does not depend on the geometry of the actual system and the number of zones, and this is
an important factor when investigating radiative heat exchange in the system while certain geometrical param-
eters vary.

After the lengths of stretched strings between all zone boundaries have been determined, the mean an-
gular radiation coefficients are calculated according to (2), where by the method just indicated it is sufficient
to determine one half of the angular coefficient matrix. For the calculation of the second half of the matrix
we use the reciprocity property [1]

d;, ;1
5,0 = B, i

Jy i+l

(9)

Thus, for the calculation of mean angular radiation coefficients in the systems considered, by the method
of flow algebra, it is possible to set up a fairly simple universal calculation program for a computer of any
type. For actual systems we have merely to determine the coordinates of all zone boundaries and the char-
acteristic point.

NOTATION

¥4 » Mean angular radiation coefficient from zone i to zone j; d, length of the stretched string between
zone boundaries; x, y, coordinates; t, characteristic point of the system; ¥i,5 angle between the direction from
point 1 to point j and a straight line parallel fo the y axis; ¥i, b angle between the direction from point i to the
characteristic point of the system and a straight line parallel to the y axis.
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